Received 9 July 2002

Accepted 11 July 2002

Online 19 July 2002

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

V. S. Senthil Kumar, Srinivasan S. Kuduva and Gautam R. Desiraju*

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India

Correspondence e-mail: desiraju@uohyd.ernet.in

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.059 wR factor = 0.132 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3,5-Dinitrosalicylic acid-phenazine (1/1)

In the 1:1 molecular complex of 3,5-dinitrosalicylic acid and phenazine, $C_7H_4N_2O_7\cdot C_{12}H_8N_2$, the carboxylic acid group forms an $O-H\cdots N$ hydrogen bond to only one of the two heterocyclic N atoms. The structure is also stabilized extensively by $C-H\cdots O$ hydrogen bonds.

Comment

The carboxylic acid functionality is well known to form molecular complexes with compounds having strong acceptor groups, such as N and O (Palmore *et al.*, 1999). Recently, this concept was invoked in the cocrystallization experiment of simple alkane dicarboxylic acids with phenazine (Batchelor *et al.*, 2000), where both N atoms of the phenazine molecule are involved in $O-H\cdots N$ hydrogen bonds. Here, we have cocrystallized phenazine with 3,5-dinitrosalicylic acid.

The molecular geometry of the title compound, (I), is shown in Fig. 1 (ORTEPII; Johnson, 1976). The carboxylic acid group forms O-H···N hydrogen bonds on one side of the phenazine molecule, while the other N atom was found to be inactive. The emphasis of this crystal structure is on the structural attributes of C-H···O hydrogen bonding (Desiraju & Steiner, 1999). In the crystal structure, each 3,5dinitrosalicylic acid molecule is connected to the phenazine molecule by $C-H\cdots O$ interactions and forms 2₁-screwrelated ribbons parallel to [044] and $[0\overline{4}4]$. These two ribbons are connected by an O-H···N (1.76 Å and 161°) and an auxiliary C-H···O (2.78 Å and 143°) hydrogen bond to make a two-dimensional grid structure. These grids are further connected by C-H···O hydrogen bonds, forming another such grid. The packing diagram of the molecular complex is shown in Fig. 2. The occurrence of $C-H \cdots O$ hydrogen bonds follows from the presence of activated C-H groups in the constituent molecules.

Experimental

Yellow crystals of the 1:1 molecular complex of 3,5-dinitrosalicylic acid and phenazine were obtained when a 2:1 mixture of 3,5-dinitrosalicylic acid and phenazine was kept for crystallization in acetonitrile solvent.

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

View of the title molecular complex, with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2

Packing diagram of the molecular complex, showing the C-H···O hydrogen-bonded ribbons elongated parallel to the [044] plane.

Crystal data

$C_7H_4N_2O_7 \cdot C_{12}H_8N_2$	$D_{\rm x} = 1.556 {\rm Mg} {\rm m}^{-3}$		
$M_r = 408.33$	Mo $K\alpha$ radiation		
Monoclinic, $P2_1/a$	Cell parameters from 25		
a = 14.8002 (15) Å	reflections		
b = 7.4029 (16) Å	$\theta = 5-12^{\circ}$		
c = 16.0091 (16) Å	$\mu = 0.12 \text{ mm}^{-1}$		
$\beta = 96.395 \ (8)^{\circ}$	T = 293 (2) K		
$V = 1743.1 (5) \text{ Å}^3$	Rhomb, yellow		
Z = 4	$0.36 \times 0.34 \times 0.26 \text{ mm}$		

Data collection

Enraf–Nonius CAD-4
diffractometer
w scans
Absorption correction: none
8396 measured reflections
4202 independent reflections
1930 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.056$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.132$ S = 0.924202 reflections 273 parameters

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots N3$	0.82	1.76	2.554 (3)	161
$C10-H10A\cdotsO1^{i}$	0.93	2.66	3.550 (4)	161
$C11 - H11A \cdots O7^{i}$	0.93	2.62	3.524 (3)	163
$C13 - H13A \cdots O4^{ii}$	0.93	2.49	3.332 (4)	151
$C14-H14A\cdots O3^{ii}$	0.93	2.66	3.529 (3)	155
$C15 - H15A \cdots O2$	0.93	2.78	3.566 (3)	143

 $\theta_{\rm max} = 28.0^{\circ}$ $h = 0 \rightarrow 19$ $k = -9 \rightarrow 9$ $l = -21 \rightarrow 21$ 3 standard reflections every 150 reflections frequency: 90 min intensity decay: 2%

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0573P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Symmetry codes: (i) $\frac{3}{2} - x$, $y - \frac{1}{2}$, -z; (ii) $\frac{3}{2} - x$, $\frac{1}{2} + y$, 1 - z.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: Xtal3.5 (Hall et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON (Spek, 2000); software used to prepare material for publication: SHELXL97.

VSSK and SSK thank CSIR and UGC (India) for fellowship support.

References

Batchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839-848. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

- Hall, S. R., Flack, H. D. & Stewart, J. M. (1995). Editors. Xtal3.5 Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Palmore, G. T. R., Luo, T. M., McBride-Wieser, M. T., Picciotto, E. T. & Reynoso-Paz, C. M. (1999). Chem. Mater. 11, 3315-3328.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2000). PLUTON. Utrecht University, The Netherlands.